Collective behavior in small systems from geometry-controlled measurements at 200 Shengli Huang for PHENIX collaboration #### **Outline** #### 1) Physics Motivation - 2) Results and Discussions - ✓ Long-range angular correlation in small collisions at 200 GeV - ✓ Charged hadron v₂ in p+Au, d+Au, ³He+Au and p+Al at 200 GeV - ✓ Identified particle v₂ in ³He+Au - ✓ Charged hadron v₃ in ³He+Au at 200 GeV #### 3)Summary ### What is the origin of the ridge in p+A? CMS: Phys. Lett. B 7198(2013) Key Question: What generates the ridge in small collision systems? - ✓ Final state interaction: Hydrodynamics? - ✓ Initial momentum correlation: CGC? #### **Geometry engineering** - ➤ Different initial geometry → different final state particle emission for p+Au, d+Au and ³He+Au collisions - The dedicated heavy ion machine RHIC can provide this kind of test with its unmatched versatility #### The internal structure of proton The eccentricity is significantly different for round and eccentric proton The shape of proton does matter! # Ridge in 0-5% d/³He+Au 200 GeV - ✓ A ridge is observed in high multiplicity(0-5%) d+Au and ³He+Au collisions - ✓ In the reference pp collision, the correlation is dominated by momentum conservation (including di-jets) - \checkmark A Fourier expansion function is fitted to extract the c_n 1/9/2017 Shengli Huang #### Correlation in pAu@200Gev No clear peak is observed for long range angular correlation in p+Au collisions Still quite different to that of pp, in which a "dip" is seen for the near side two particle correlation #### **Estimation of non-flow contribution** For c_2 , the non-flow contribution estimated using p+p correlation is <10% in 0-5% d/ 3 He+Au collisions In 0-5% 3 He+Au collisions, the non-flow contribution is <15% for c_3 # Non-flow Estimation in p+pAu The jet contribution estimated using p+p correlation rises with p_T and reaches about 25% in 0-5% p+Au collisions A systematic uncertainty is cited instead of subtraction Shengli Huang ### Comparison with p+Au 200 GeV The v₂ from central p+Au collisions is lower than that of central d+Au and ³He+Au collisions Smaller initial geometry eccentricity → smaller v₂ 1/9/2017 Shengli Huang # v_2/ϵ_2 in small collision systems The v_2/ϵ_2 in p+Au is higher than that of d+Au and 3 He+Au collisions This behavior is within the expectation of SONIC model, which includes Glauber initial geometry and viscous hydro evolution. # Initial eccentricity=> final momentum flow For d/³He+Au, the eccentricities are largest at beginning while the systems do not fully flow together In d/³He+Au, systems are harder to pick up the initial geometry information comparing with that of p+Au #### Compare with Hydro + IPGlasma Hydro+IPGlamas with round proton under-estimates the v_2 in p+Au Shape of proton plays a significant role in the calculation of hydro+IPGlasma #### Correlation and nonflow in p+Al@200GeV The mean multiplicity in 0-5% p+Al collisions is about a factor two lower than that of p+Au The jet contribution in p+Al is about 33% #### The v₂ in p+Al collisions at 200GeV The v_2 in p+Al is quite similar to that in p+Au collisions # Identified particle v₂ in ³He+Au At p_T < 1.5 GeV/c: mass order -- v2(proton) < v2(kaon) < v2(pion) At p_T > 2.0 GeV/c: difference for meson and baryon These behaviors are very similar to that in Au+Au collisions and calculations of viscous hydro. # Number of Quark Scaling in ³He+Au The familiar behavior of number of quark scaling observed in Au+Au collisions is also seen in the small ³He+Au system # The v₃ in ³He+Au collisions at 200 GeV 0-5% 3He+Au collisions PRL 115,142301 At low p_T , v_3 in 3 He+Au collisions prefer to the calculation from super SONIC which has the preequilibrium flow Require more accurate measurement! Comparing with v₃ in d+Au would further help us to test the initial geometry effect. New d+Au 200 GeV run in 2016! (Super)SONIC: arXiv:1502.04745 #### **Summary** - The ridge is seen in p+Al, p+Au, d+Au and ³He+Au collisions. - A similar v₂ is seen in p+Al and p+Au collisions and smaller than that of d+Au and ³He+Au collisions - The number of quark scaling is also observed for identified particle v₂ in ³He+Au collisions - The sizeable v_3 is observed in ${}^3He+Au$ collisions and the v_3 of d+Au will come out soon